半导体视界

面向腰椎肌电信号监测的柔性可穿戴传感器及其诊断与康复应用

Authors

  • 铭轩 张

    西交利物浦大学芯片学院
    Author
  • 骐峰 陆

    西交利物浦大学芯片学院
    Author

Keywords:

腰椎疾病,久坐,表面肌电,客观量化,康复治

Abstract

腰椎疾病已成为全球范围内的公共健康负担,尤其在久坐生活方式普遍的年轻人群中发病率持续上升。传统影像学手段( MRI、CT)往往只能在出现不可逆损伤后检测出病变,缺乏早期预警功能。表面肌电图( sEMG)因其安全、简便和实时反馈等优势,近年来在腰椎健康监测与康复中展现出巨大潜力,有望为疾病的评估与干预提供客观量化依据。本文旨在综述sEMG 在腰椎健康监测与康复中的研究进展与挑战,为构建客观量化的诊疗体系提供参考。

References

[1]Y. Qiu, X. Wei, Y. Tao, B. Song, M. Wang, a n d Z . Yi n , e t a l . , “ C a u s a l a s s o c i a t i o n o f l e i s u re sedentary behavior and cervical spondylosis, sciatica, intervertebral disk disorders, and low back pain: A Me n d el i a n ra n d o m i z a t i o n s t u dy, ” Fro n t . P u b l i c Health, vol. 12, p. 1284594, 2024, doi: 10.3389/fpubh.2024.1284594.

[2]B. Wan, N. Ma, and W. Lu, “Evaluating the causal relationship between five modifiable factors and the risk of spinal stenosis: A multivariable Mendelian randomization analysis,” PeerJ, vol. 11, p. e15087, 2023, doi: 10.7717/peerj.15087.

[ 3 ] L . M . B el f i, A . O. O r t i z , a n d D. S. Ka t z , “Computed tomography evaluation of spondylolysis and spondylolisthesis in asymptomatic patients,” Spine, vol. 31, no. 24, pp. E907-E910, 2006, doi: 10.1097/01.brs.0000245947.31473.0a.

[ 4 ]T. S o l e r a n d C . C a l d e ró n , “ T h e p re v a l e n c e of spondylolysis in the Spanish elite athlete,” Am. J. Sports Med., vol. 28, no. 1, pp. 57-62, 2000, doi: 10.1177/03635465000280012101.[5]L. Kalichman, D. H. Kim, L. Li, A. Guermazi, V. B e r k i n , a n d D. J. H u n t e r, “ S p o n d y l o l y s i s a n d spondylolisthesis: Prevalence and association with low back pain in the adult community-based population,”

Spine, vol. 34, no. 2, pp. 199-205, 2009, doi: 10.1097/BRS.0b013e31818edcfd.

[ 6 ] C . J . D e L u c a , “ T h e u s e o f s u r f a c e electromyography in biomechanics,” J. Appl. Biomech., vol. 13, no. 2, pp. 135-163, May 1997, doi: 10.1123/jab.13.2.135.

[7]H. Liu, W. Dong, Y. Li, F. Li, J. Geng, and M. Zhu, et al., “An epidermal sEMG tattoo-like patch as a new human-machine interface for patients with loss of voice,” Microsyst. Nanoeng., vol. 6, no. 1, p. 16, 2020, doi: 10.1038/s41378-019-0127-5.

[8]S. Yang, J. Cheng, J. Shang, C. Hang, J. Qi, and L. Zhong, et al., “Stretchable surface electromyography electrode array patch for tendon location and muscle injury prevention,” Nat. Commun., vol. 14, no. 1, p. 6494, 2023, doi: 10.1038/s41467-023-42149-x.

[9]G. Ren, M. Zhang, L. Zhuang, L. Li, S. Zhao, and J. Guo, et al., “MRI and CT compatible asymmetric bilayer hydrogel electrodes for EEG-based brain activity monitoring,” Microsyst. Nanoeng., vol. 10, no. 1, p. 156, 2024, doi: 10.1038/s41378-024-00805-2.

[10]M. Zhang, M. Hao, B. Liu, J. Chen, G. Ren, and Y. Zhao, et al., “Recent progress of hydrogels in brain–machine interface,” Soft Sci., vol. 4, no. 4, 2024, doi: 10.20517/ss.2024.34.

[11]M. Suo, L. Zhou, J. Wang, H. Huang, J. Zhang, and T. Sun, et al., “The application of surface electromyography technology in evaluating paraspinal muscle function,” Diagnostics, vol. 14, no. 11, p. 1086, 2024, doi: 10.3390/diagnostics14111086.

[12]S. Qie, W. Li, X. Li, X. Chen, W. Gong, and J. Xi, et al., “Electromyography activities in patients with lower lumbar disc herniation,” J. Back Musculoskelet. Rehabil., vol. 33, no. 4, pp. 589-596, 2020, doi: 10.3233/BMR-181308.

[13]W. Du, H. Li, O. M. Omisore, L. Wang, W. Chen, and X. Sun, “Co-contraction characteristics of lumbar muscles in patients with lumbar disc herniation during different types of movement,” Biomed. Eng. Online, vol. 17, no. 1, p. 8, 2018, doi: 10.1186/s12938-018-0443-2.

[14]M. Zhang, M. Hao, G. Ren, Y. Zhao, C. Lv, and Y. Xia, et al., “Flexible electromyography sensor with in situ gelation hydrogel for early diagnosis of lumbar spine diseases,” InfoMat, doi: 10.1002/inf2.70066.

[15]Y. Liu, C. Zheng, J. Miao, H. Chen, H. Quan, and S. Yan, et al., “Diagnosis of compressed nerve root in lumbar disc herniation patients by surface electromyography,” Orthop. Surg, vol. 10, no. 1, pp. 47-55, 2018, doi: 10.1111/os.12362.

[16]H. Wang, Y. Wang, Y. Li, C. Wang, and S. Qie, “A diagnostic model of nerve root compression localization in lower lumbar disc herniation based on random forest algorithm and surface electromyography,” Front. Hum. Neurosci., vol. 17, p. 1176001, 2023, doi: 10.3389/fnhum.2023.1176001.

[17]P. Sbriccoli, F. Felici, A. Rosponi, et al., “Exercise induced muscle damage and recovery assessed by means of linear and non-linear sEMG analysis and ultrasonography,” J. Electromyogr. Kinesiol., vol. 11, no. 2, pp. 73-83, 2001, doi: 10.1016/S1050-6411(00)00042-0.

[18]W. Wang, H. Wei, R. Shi, et al., “Dysfunctional muscle activities and co-contraction in the lower-limb of lumbar disc herniation patients during walking,” Sci. Rep., vol. 10, no. 1, p. 20432, 2020, doi: 10.1038/s41598-020-77150-7.

[ 1 9 ] G. R . E b e n b i ch l e r, L . I . E . O d d s s o n , J. Kollmitzer, et al., “Sensory-motor control of the lower b a c k : i m p l i c a t i o n s fo r re h a b i l i t a t i o n , ” Me d . S c i . Sports Exerc., vol. 33, no. 11, pp. 1889-1898, 2001, doi: 10.1097/00005768-200111000-00014.

[20]Y. Mohebbi Rad, M. R. Fadaei Chafy, and A. Elmieh, “Is the novel suspension exercises superior to core stability exercises on some EMG coordinates, pain and range of motion of patients with disk herniation?,” Sport Sci. Health, vol. 18, no. 2, pp. 567-577, 2022, doi:

10.1007/s11332-021-00848-2.

[21]L. A. V. Ramos, B. Callegari, F. J. R. França, et al., “Comparison between transcutaneous electrical nerve stimulation and stabilization exercises in fatigue and transversus abdominis activation in patients with lumbar disk herniation: a randomized study,” J. Manipulative Physiol. Ther., vol. 41, no. 4, pp. 323-331, 2018, doi: 10.1016/j.jmpt.2017.10.010.

[22]M. Ratajczak, M. Waszak, E. Ś liwicka, et a l . , “ I n s e a rc h o f b i o m a r k e r s fo r l o w b a c k p a i n : Can traction therapy effectiveness be prognosed by s u r f a c e el e c t ro myo g rap hy o r b l o o d p a ra m e t e r s ?, ” Front. Physiol., vol. 14, p. 1290409, 2023, doi: 10.3389/fphys.2023.1290409.

[23]A. L. Mikula, S. K. Williams, and P. A. Anderson, “The use of intraoperative triggered electromyography to detect misplaced pedicle screws: A systematic review and meta-analysis,” J. Neurosurg. Spine, vol. 24, no. 4, pp. 624-638, 2016, doi: 10.3171/2015.6.SPINE141323.

[24]R. P. Reddy, R. Chang, D. V. Coutinho, et al., “Triggered electromyography is a useful intraoperative adjunct to predict postoperative neurological deficit following lumbar pedicle screw instrumentation,” Glob. Spine J., vol. 12, no. 5, pp. 1003-1011, 2022, doi: 10.1177/21925682211018472.

[25]W.K. Min, H.J. Lee, W.J. Jeong, C.W. Oh, J.S. Bae, and H.S. Cho, et al.,“Reliability of triggered EMG for prediction of safety during pedicle screw placement in adolescent idiopathic scoliosis surgery,” Asian Spine J., vol. 5, no. 1, pp. 51–57, 2011, doi: 10.4184/asj.2011.5.1.51.

[26]A. F. Samdani, M. Tantorski, P. J. Cahill, A. Ranade, S. Koch, and D. H. Clements, et al., “Triggered electromyography for placement of thoracic pedicle screws: Is it reliable?,” Eur. Spine J., vol. 20, no. 6, pp. 869–874, 2011, doi: 10.1007/s00586-010-1653-x.

[27]B. L. Raynor, L. G. Lenke, K. H. Bridwell, et al., “Correlation between low triggered electromyographic thresholds and lumbar pedicle screw malposition: Analysis of 4857 screws,” Spine, vol. 32, no. 24, pp. 2673-2678, 2007, doi: 10.1097/BRS.0b013e31815a524f.

[28]M. Wojtysiak, J. Huber, A. Wiertel-Krawczuk, et al., “Pre- and postoperative evaluation of patients with lumbosacral disc herniation by neurophysiological and clinical assessment,” Spine, vol. 39, no. 21, pp. 1792-1800, 2014, doi: 10.1097/BRS.0000000000000510.

[ 2 9 ]Y. L i, X . Z h a n g, J. D a i, e t a l . , “ C h a n ge s i n the flexion-relaxation response after percutaneous endoscopic lumbar discectomy in patients with disc herniation,” World Neurosurg., vol. 125, pp. e1042-e1049, 2019, doi: 10.1016/j.wneu.2019.01.238.

[30]S. Lener, C. Wipplinger, S. Hartmann, et al., “The influence of surface EMG-triggered multichannel electrical stimulation on sensomotoric recovery in patients with lumbar disc herniation: Study protocol for a randomized controlled trial (RECO),” Trials, vol. 18,

no. 1, p. 566, 2017, doi: 10.1186/s13063-017-2310-z.

[31]S. P. Tarnanen, M. H. Neva, K. Häkkinen, et al., “Neutral spine control exercises in rehabilitation after lumbar spine fusion,” J. Strength Cond. Res., vol. 28, no. 7, pp. 2018-2025, 2014, doi: 10.1519/JSC.0000000000000334.

[32]Y. U. Okubo, K. Kaneoka, A. Imai, et al., “Comparison of the activities of the deep trunk muscles measured using intramuscular and surface electromyography,” J. Mech. Med. Biol., vol. 10, no. 4, pp. 611-620, 2010, doi: 10.1142/S0219519410003599.

[33]S. Fuentes del Toro and J. Aranda-Ruiz, “The impact of normalization procedures on surface electromyography (sEMG) data integrity: A study of bicep and tricep muscle signal analysis,” Sensors, vol. 25, no. 9, p. 2668, 2025, doi: 10.3390/s25092668.

[34]R. S. Ochia and P. R. Cavanagh, “Reliability o f s u r f a c e E MG m e a s u re m e n t s o ve r 1 2 h o u r s, ” J. Electromyogr. Kinesiol., vol. 17, no. 3, pp. 365-371, 2007, doi: 10.1016/j.jelekin.2006.01.003.

[35]B. K. Hodossy, A. S. Guez, S. Jing, et al., “Leveraging high-density EMG to investigate bipolar electrode placement for gait prediction models,” IEEE Trans. Hum.-Mach. Syst., vol. 54, no. 2, pp. 192-201, 2024, doi: 10.1109/THMS.2024.3371099. [36]S. Xu, J. Kim, J. R. Walter, R. Ghaffari, and J.

A. Rogers, “Translational gaps and opportunities for medical wearables in digital health,” Sci. Transl. Med., vol. 14, no. 666, p. eabn6036, Oct. 12, 2022, doi: 10.1126/scitranslmed.abn6036.

[37]D. R. Seshadri, S. Magliato, J. E. Voos, and C. Drummond, “Clinical translation of biomedical sensors for sports medicine,” J. Med. Eng. Technol., vol. 43, no. 1, pp. 66–81, 2019, doi: 10.1080/03091902.2019.1612474.

Downloads